MLCC电极用超细铜粉的制备方法按反应体系的状态大体上可分为固相法、气相法和液相法。
一、固相法
固相法主要包括物理粉碎法、机械化学法等。
1、物理粉碎法
物理粉碎法主要是利用硬质媒介物的搅拌研磨,或是粉末在高速气流中的强大的压缩力和摩擦力来进行金属粉的磨碎。球磨法是*常见的物理粉碎法,其原理是利用球状硬质材料对铜物料进行强烈的撞击,使物料经破碎、研磨后粒度减小,从而制得超细铜颗粒。
2、机械化学法
机械化学法是在物理粉碎法的基础上发展起来的,该法将物理粉碎法与化学反应相结合制备超细铜粉。将干燥的细铜粉、CuCl2以及Na粉混合后在充满氮气的密封钢瓶中进行高能球磨,在固态下发生CuCl2与Na的取代反应,生成铜和氯化钠的混合物,清洗去除氯化钠后得到超细铜粉。该法在稳定反应时所得铜粉的粒径在20~50nm之间,若球磨过程中发生燃烧,铜颗粒的粒径将会增大。
用固相法制备超细铜粉的优点是操作简便,产能较大;缺点是产品的粒径分布较宽,生产过程容易引入杂质对设备进行改进后将有很广阔的应用前景。
二、液相法
液相法制备超细铜粉是目前实验室和工业上广泛采用的方法,主要包括γ-射线辐照法、微乳液法、电化学法以及液相还原法等。
1、γ-射线辐照法
γ-射线辐照法通过γ-射线辐照金属盐溶液生成具有还原性的自由基和活性粒子,进而将金属离子还原,生成的金属原子经过核长大形成超细粒子。γ-射线在常温常压下易于操作,易于扩大生产规模,但是制得的金属粉末多为离散胶体。
2、微乳液法
微乳液法是指由两种分别包有不同反应物的微乳液在搅拌下发生反应生成金属沉淀的方法。水分子被表面活性剂分离成一个个极小的反应空间,即“微反应器”,在该空间反应形成的一定形态的纳米铜粒子一般包裹有一层表面活性剂,不仅非常微小,而且粒径均匀。该反应也经历了金属分子的成核,生长,聚结等过程。研究表明利用十二烷基硫酸钠/异戊醇/环己烷/水微乳液体系可制备出粒度分布范围为7~13nm,平均粒径约为10nm的球形铜微粒。
3、电化学法
电化学法是目前工业上生产超细铜粉的一种常用方法。在二价铜盐溶液爱游戏登录入口入电流,控制一定的电流密度以及槽电压等条件,在极板上析出铜粉。普通的电解方法制得的铜粉粒径较大,粒度分布不均,多呈枝晶状。用超声波探头作为电化学电沉积金属的阴极,通过降低阴极电流密度制得的超细铜粉平均粒径能低至100nm,粒度分布均匀,该粒径的铜粉显示出高抗菌性。超声电解法也解决了普通电解中的刮粉问题。
4、液相还原法
液相还原法是指通过控制一定的反应条件,金属阳离子溶液在还原剂的作用下析出微米甚至纳米级的金属单质。近年来,液相还原法由于具有加工温度低,生产成本低,成分容易控制以及其制得的铜粉粒度均匀、分散性好等优点而备受关注,具有很好的工业化发展前景。但是液相法制备超细铜粉时,后处理程序经常遇到固液分离困难的问题。
采用固相法的例如用热分解甲酸铜制取铜粉,分散性较差。气相法制取铜粉需要专用的制备装置,投资较大,铜粉粒径分布较宽。液相还原法制备铜粉具有设备投资少,操作简单等优点,得到了广泛的研究应用。
三、气相法
气相法是指反应气体在热、激光等作用下发生化学反应生成超细粉体的方法。其中,低温化学气相沉积法(CVD)相比物理方法中的气相蒸发法所需温度较低。乙酰丙酮铜作反应前驱物沉积于介孔材料SBA-15孔道内,通入作还原气的氢气,将先驱物连续地还原成金属铜,从而生成纳米级别的超细铜粉。氢气的连续通入也减小了乙酰丙酮铜的粒度,因而该方法制得的粉体分散度好,粒径小。